
Abstract. Satisfiability modulo theories (SMT) solvers are widely used
to ensure the correctness of safety- and security-critical applications.
Therefore, being able to trust a solver’s results is crucial. One way to
increase trust is to generate independently checkable proof certificates,
which record the reasoning steps done by the solver. A key challenge
with this approach is that it is difficult to efficiently and accurately pro-
duce proofs for reasoning steps involving term rewriting rules. Previous
work showed how a domain-specific language, Rare, can be used to cap-
ture rewriting rules for the purposes of proof production. However, in
that work, the Rare rules had to be trusted, as the correctness of the
rules themselves was not checked by the proof checker. In this paper,
we present IsaRare, a tool that can automatically translate Rare rules
into Isabelle/HOL lemmas. The soundness of the rules can then be veri-
fied by proving the lemmas. Because an incorrect rule can put the entire
soundness of a proof system in jeopardy, our solution closes an important
gap in the trustworthiness of SMT proof certificates. The same tool also
provides a necessary component for enabling full proof reconstruction of
SMT proof certificates in Isabelle/HOL. We evaluate our approach by
verifying an extensive set of rewrite rules used by the cvc5 SMT solver.

1 Introduction

Satisfiability modulo theories (SMT) [8] solvers provide the back-end reasoning
power for many formal methods applications. These applications are often used
to provide safety or security guarantees for critical systems [1, 15, 21, 23]. For
such applications, an incorrect result from a solver could have catastrophic con-
sequences. Thus, ensuring the correctness of a solver’s results is crucial. However,
industrial-strength SMT solvers are large and complex software systems which
are under constant active development. As with any other large software project,
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even when employing software engineering best practices, it is unrealistic to ex-
pect that solvers do not contain implementation bugs that could, in the worst
case, compromise the correctness of their answers.

One solution is to formally verify the SMT solver itself. Unfortunately, that
would be a massive effort. It would likely require performance compromises [17]
and impose a tremendous maintenance burden, as changes to solvers are frequent,
and each change would require revisiting the verification.

Fortunately, there is a less expensive alternative: we can independently check
each result produced by a solver. This is generally easy when the result is “satis-
fiable,” at least for quantifier-free inputs. The solver can produce a model and we
can check via evaluation that the input formula indeed holds in it. To have a sim-
ilar ability to check a result of “unsatisfiable,” solvers must be instrumented to
produce proof certificates that can be independently verified by a separate proof
checker. To maximize trustworthiness, the proof checker should be small, sim-
ple, and, ideally, formally verified. Alternatively, the checker can be embedded
in a highly trusted system such as a skeptical interactive theorem prover. The
SMT community is increasingly embracing proof production, with it becoming
a major focus in recent years [3, 4, 19, 29].

One of the main challenges faced by SMT proof production efforts is the
extensive use of theory-specific term rewriting rules. There are hundreds of such
rules in modern solvers, each of which must be justifiable using some proof
rule. Nötzli et al. [28] introduced a methodology for producing proofs for term
rewriting rules by using the Rare domain-specific language. In that work, rules
are defined inRare, imported by a solver, and then used to elaborate the solver’s
term rewriting proof steps into finer-grained proofs using the Rare rules. This
approach has proved to be viable in the cvc5 SMT solver [2]. However, previous
work did not address the correctness of the rules, i.e., it does not ensure that an
incorrect Rare rule does not compromise the correctness of proof certificates.

An incorrect rule can have severe consequences. First of all, it may affect the
ability of the solver to produce a proof certificate at all: if the incorrect rule does
not match what the solver code does, then the elaboration of the term rewriting
proof steps with Rare may fail. More concerningly, if both the code and the
proof rule are incorrect in the same way (perhaps because one was modeled
after the other), then proof elaboration may succeed, but the proof certificate
will be incorrect because it uses an invalid rule. This is especially problematic
when using proof checkers that consider proof rules as trusted—that is, they only
check whether rules are applied correctly and do not check the rules themselves.

There are two ways to fill this gap. One is to separately verify the proof rules;
another is to use a more sophisticated proof checker, for example, one embedded
in a skeptical interactive theorem prover, that will fail if an invalid rule is used.
In this paper, we introduce IsaRare, a new plugin for the Isabelle/HOL proof
assistant [27] (abbreviated to just Isabelle going forward), which can do the for-
mer and is a necessary step towards the latter. The plugin translates Rare rules
into the language of Isabelle where they can then be formally proved as lemmas.
Note that when using IsaRare simply as a rewrite rule verifier, the translation
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from Rare to Isabelle becomes another trusted component. We mitigate this by
reusing extensively-tested infrastructure in Isabelle for the translation.

To show the effectiveness of IsaRare, we implemented a large number of
new rules in Rare (beyond those in [28]) needed to elaborate term rewriting
steps in proofs generated by the cvc5 SMT solver [2]. We show that IsaRare
can translate all of these rules into corresponding lemmas in Isabelle and can
prove the majority of them automatically. In ongoing work, we are manually
providing proofs for the rest, and have already proven most of them.

Our long-term vision is to enable the full integration of cvc5 and Isabelle via
proof certificate reconstruction. Currently, Isabelle can send proof obligations to
cvc5, but it is unable to automatically reconstruct Isabelle proofs from cvc5’s
proof certificates. Our goal is to enable Isabelle to reconstruct every step in these
proof certificates. In order to reach this goal, it is essential to have rewrite lemmas
available for reconstructing rewrite steps, as they appear in almost all proofs, and
without dedicated support for discharging rewrite proof steps, reconstruction in
Isabelle can fail [11, 31].

In summary, we make the following contributions:

– we introduce IsaRare, an Isabelle plugin for generating correctness lemmas
for Rare rules;

– we add several new features to Rare itself and implement 163 new rewrite
rules in Rare, almost tripling the size of the rule database from [28];

– we evaluate IsaRare, showing that it can translate all of the Rare rules
into Isabelle lemmas and can prove the majority of them automatically.

In the rest of the paper, after surveying related work, we give an overview
of proof production and the interface to Isabelle (Section 2). Then, we present
the Rare language and our extensions (Section 3). We next introduce IsaRare
and explain the challenges in transforming a Rare rule to an Isabelle lemma
(Section 4). Finally, we present an evaluation of our approach (Section 5).

1.1 Related Work

Various attempts at proof production in SMT solvers have been implemented in
the past [7, 13, 14, 22, 25], though these implementations typically either pro-
duce proofs certificates that are too coarse-grained (that is, they do not provide
enough information for efficient proof checking) or produce them only if critical
components are disabled, making solving while producing proofs slow or incom-
plete. Producing complete, independently-checkable proofs remains challenging.

One major challenge is solved by the modular framework by Barbosa et al. [3].
It enables proof production during term rewriting and formula processing and
has been implemented in the SMT solver veriT [13] using the Alethe proof format
[32]. Hoenicke and Schindler [19] introduce an alternative approach, implemented
in the solver SMTInterpol [14], which also allows proof production for term
rewriting and formula processing. Both of these approaches assume that the
set of rewrite rules that can be used in proofs is fixed. Their sets include rules
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for rewriting over equality, rules for rewriting Boolean formulas, and rules for
reasoning about arithmetic. Notably absent, however, are rules for string and bit-
vector rewrites. In other work, Barbosa et al. [4] describe a general architecture
where the only holes in the generated proof certificates are those from rewrite
steps. One of their key ideas is to support lazy proof production via a post-
processing proof reconstruction step. This capability is leveraged in the work by
Nötzli et al. [28] to produce proofs for rewrite steps based on rules written in
Rare, which is the starting point for this work.

The interactive theorem prover Isabelle [30] includes a popular tool called
Sledgehammer [9], which encodes proof obligations as SMT problems and uses
SMT solvers to solve them. Sledgehammer currently supports proof reconstruc-
tion [12, 18] for two SMT solvers: z3 [26] and veriT [13]. However, z3 provides
only coarse-grained proofs, which can cause reconstruction to fail. This issue
was addressed for veriT by manually translating and proving correct in Isabelle
the predefined set of rewrite rules in Alethe [18, 31]. Our work improves on this
effort by providing an automatic mechanism for translating an extendable set of
rewrite rules into Isabelle and includes support for bit-vector and string rewrites
unsupported by veriT.

2 Preliminaries

2.1 Satisfiability Modulo Theories (SMT)

The underlying logic of SMT is many-sorted first-order logic with equality (see
e.g., [16]). A signature Σ consists of a set Σs⊆ S of sort symbols and a set Σf

of sorted function symbols with sorts from Σs. We assume the usual definitions
of well-sorted terms, literals, and formulas. We also use the usual definition of
interpretations and of a satisfiability relation |= between Σ-interpretations and
Σ-formulas. A Σ-theory T is a non-empty class of Σ-interpretations closed under
variable reassignment. A Σ-formula ϕ is T -satisfiable (resp., T -unsatisfiable, T -
valid) if it is satisfied by some (resp., no, all) interpretation(s) in T . For the rest
of the paper, we assume (un)satisfiability is always with respect to some given
background theory T .

2.2 SMT Proofs and Rewriting

A proof (of unsatisfiability) is a series of inference steps starting from an input
formula and terminating with ⊥, showing that the input formula is unsatisfiable.
The granularity of a proof step refers to how much reasoning it requires and
roughly corresponds to the complexity of checking that the step is correct. In
particular, steps (and thus the proofs containing them) are fine-grained if they
can be efficiently checked, and coarse-grained otherwise. We will often refer to
coarse-grained steps as holes.

One approach for the efficient production of proofs is to introduce coarse-
grained proof steps for certain performance-critical deductions made while solv-
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ing and then go back and fill in these holes with fine-grained steps as a post-
processing step. We refer to this as proof elaboration, and it is particularly appeal-
ing for rewriting steps, since SMT solvers have hundreds of different rewrites to
simplify and normalize terms, and instrumenting the rewriting code to produce
fine-grained proofs is difficult and may introduce an unacceptable degradation
in performance.

The approach taken by Nötzli et al. [28], and the one we also follow in this
paper, is to assume that the SMT solver uses generic proof steps for all rewrites
during solving and then elaborates these steps during post-processing by consult-
ing a database of specific rewrite rules. The database is constructed by defining
a set of rewrite rules in the domain-specific language Rare, which we discuss in
Section 3. The elaboration tries to find one or more rules from the database to
justify each generic, coarse-grained rewrite step. Additionally, it uses a built-in
evaluate rule to justify steps that hold purely via constant folding. If elabora-
tion is successful, the generic step is replaced by the fine-grained steps from the
database.

2.3 SMT in Isabelle

As mentioned above, Sledgehammer [9] is an Isabelle tactic that applies auto-
mated reasoning tools, including SMT solvers, to prove goals in Isabelle. When
targeting an SMT solver, the goal is encoded as an SMT-LIB [5] problem which
is unsatisfiable iff the goal is valid. Sledgehammer also selects facts that it thinks
will be relevant for solving the goal and includes encodings of them as well. The
problem is given to the solver which reports back to Sledgehammer whether it
was able to prove the goal [9]. Proving the goal externally, however, is not enough
since Isabelle is a skeptical proof assistant, in the sense that it does not trust
external solvers. Thus, a proof of the goal must somehow be constructed and
checked inside Isabelle.

Finding such a proof internally can be challenging. One useful technique is to
query the external solver for an unsat core, i.e., a subset of the facts it was given
that are sufficient to prove the goal valid. Sometimes, this information is enough
for Isabelle to search for an internal proof on its own. However, this process can
be greatly improved, if, instead of just communicating the result and the core
back to Sledgehammer, the solver also communicates a fine-grained proof. Then,
with the appropriate proof reconstruction machinery, each step in the proof can
be reconstructed as one or more steps using Isabelle’s internal inference engine.
As mentioned in Section 1.1, Sledgehammer can do this for proofs from the veriT
and z3 solvers, though the former supports only a limited set of theories, and
the latter produces only coarse-grained proofs.

Still, this means that Isabelle already has an integration with solvers sup-
porting the SMT-LIB standard and is able to translate to and from SMT-LIB
and internal terms. We build on this integration and extend it. Notice that such
an integration requires each SMT-LIB operator to be matched with a term in
Isabelle with the same semantics. Isabelle has built-in operators that match well
with those in the uninterpreted function and arithmetic SMT theories, and both
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formalisms support quantifiers [18]. However, Isabelle only has partial support
for bit-vector operators. A more complete development of bit-vectors in Isabelle
is described by Böhme et al. [11], but unfortunately, parts of their work (in-
cluding parsing bit-vector proofs) never made it into Isabelle and now appear to
be lost. As we describe below, part of our effort includes improving support for
SMT theories in Isabelle, including bit-vectors and strings.

2.4 Approximate Sorts

Rare rules are meant to be easy and effortless to write. This is not the case when
users have to specify sort information that is either inferable from the context or
too restrictive. As an example of the latter, consider any rewrite rules involving
bit-vector sorts. The SMT-LIB standard provides bit-vectors sorts that are pa-
rameterized by their size, or bit-width. However, to keep sort checking simple, it
requires all bit-widths in SMT-LIB scripts to be concrete as, for instance, in (_
BitVec 8). A similar argument applies to polymorphic sorts because, although
SMT-LIB allows the definition of theories with such sorts (such as, for instance,
array, set, and sequence sorts), it restricts scripts to monomorphic instantiations
of polymorphic sorts — e.g., (Set Int).

Unfortunately, these restrictions are too strong for Rare. They make it im-
possible, for example, to write any rewrite rule involving bit-vector terms that
is naturally parametric in the bit-width of those terms, or any rule involving
terms with a polymorphic sort. The ideal solution would then be to introduce
dependent types (or sorts, to maintain the SMT-LIB terminology) in Rare,
allowing both value and type parameters in sorts — e.g., (_ BitVec n) with n
an integer variable, and (Array A B) with A and B type variables. However, this
would make it difficult for SMT solvers, cvc5 included, to process Rare rules
since, effectively, they only support non-dependent, monomorphic sorts.

Rare’s compromise solution is to add instead approximate sorts to the sort
system, following an approach analogous to gradual typing in programming lan-
guages [33], a hybrid type-checking discipline where some program types are
checked statically and others are checked dynamically. In our case, where there
is no notion of dynamic checking, we have instead two sort-checking phases in
the SMT solver for Rare rules: (i) as the rules are read by the solver, when sort
checking is done with respect to the declared approximate sorts, and (ii) during
proof elaboration, when the approximate sorts in the Rare rules are matched
against the exact sorts in the proof steps that correspond to those rules.

Approximate sorts are obtained by extending the sort system of SMT-LIB
with a distinguished unknown value and a distinguished unknown sort, both
denoted by ?, that can be used in place of a value or parameter in a sort. This
allows the construction of approximate sorts such as (_ BitVec ?), (Set ?), and
(Array ? ?) (abbreviated as ?BitVec, ?Set, and ?Array), while still allowing pre-
cise sorts such as (_ BitVec 1), (Set Real), and (Array Int Real). Approximate
sorts can be used to approximate dependently-sorted/polymorphic rewrite rules,
as we see in the next section.
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⟨rule⟩ ::= ( define-rule ⟨symbol⟩ ( ⟨par⟩∗ ) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ )
| ( define-rule* ⟨symbol⟩ ( ⟨par⟩∗ ) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ [⟨expr⟩] )
| ( define-cond-rule ⟨symbol⟩ ( ⟨par⟩∗ ) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ ⟨expr⟩ )

⟨par⟩ ::= ⟨symbol⟩ ⟨sort⟩ [:list]

⟨sort⟩ ::= ⟨symbol⟩ | ? | ?⟨symbol⟩ | ( ⟨symbol⟩ ⟨numeral⟩+ )

⟨expr⟩ ::= ⟨const⟩ | ⟨id⟩ | ( ⟨id⟩ ⟨expr⟩+)

⟨id⟩ ::= ⟨symbol⟩ | ( ⟨symbol⟩ ⟨numeral⟩+ )

⟨binding⟩ ::= ( ⟨symbol⟩ ⟨expr⟩ )

⟨defs⟩ ::= ( def ⟨binding⟩+ )

Fig. 1: Overview of the grammar of Rare.

An additional advantage of this approach is that, by relieving the Rare user
from the burden of specifying the precise sort of variables in rewrite rules, it
makes them both easier to write and less error-prone. At the same time, the
loss of precision introduced by approximate sorts is not a serious hindrance in
practice: both the SMT solver, which relies on Rare rules for proof elaboration,
and IsaRare, which uses them during proof reconstruction, are able to infer the
exact sort represented by an approximate one thanks to their knowledge of the
(exact) sort of the constant and function symbols in the supported SMT theories.
Subsection 4.3 explains how IsaRare recovers exact sorts by type inference fully
automatically during the translation to Isabelle.

3 The RARE Language

The Rare language6 was introduced by Nötzli et al. [28]. As part of this work,
we have extended the language to be able to represent more rewrite rules. We
present the full updated language here and summarize the differences with [28]
at the end of the section.

A Rare file contains a list of rules whose syntax is defined by the grammar in
Figure 1. Expressions use SMT-LIB syntax with a few exceptions. These include
the use of approximate sorts for parameterized sorts (e.g., arrays and bit-vectors)
and the addition of a few extra operators (e.g., bvsize, described below). Rare
uses SMT-LIB 3 syntax [6], which is very close to SMT-LIB 2 and mostly differs
from its predecessor in that it uses higher-order functions for indexed operators.

We say that an expression e matches a match expression m if there is some
matching substitution σ that replaces each variable in m by a term of the same
sort to obtain e (i.e., mσ is syntactically identical to e). For example, the expres-
sion (or (bvugt x1 x2) (= x2 x3)), with variables x1, x2, x3, all of sort ?BitVec,
6 Rare comes from Rewrites, automatically reconstructed.
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matches (or (bvugt a b) (= b a)) but not (or (bvugt a b) (= c a)), with a,
b, and c bit-vector constant symbols of the same bit-width.

Rare Rules A Rare rewrite rule is defined with the define-rule command
which starts with a parameter list containing variables with their sorts. These
variables are used for matching as explained below. After an optional definition
list (see below), there follow two expressions that form the main body of the rule:
the match expression and the target expression. The semantics of a rule with
match expression m and target expression t is that any expression e matching
m under some sort-preserving matching substitution σ can be replaced by tσ.
With approximate sorts, the sort preservation requirement is relaxed as follows.
In Rare, for any sort constructor S of arity n > 0, there is a corresponding
approximate sort (S ? · · · ?) with n occurrences of ? which is always abbreviated
as ?S. A variable x with sort ?S (e.g., ?BitVec) in a match expression matches
all expressions whose sort is constructed with S (e.g., (BitVec 1), (BitVec 2),
and so on). Variables with sort ? match expressions of any sort.

An optional definition list may appear in a Rare rule immediately after
the parameter list. It starts with the keyword def and provides a list of local
variables and their definitions, allowing the rewrite rule to be expressed more
succinctly. A rule with a definition list is equivalent to the same rule without it,
where each variable in the definition list has been replaced by its corresponding
expression in the body of the rule. For a rule to be well-formed, all variables in
the match and target expressions must appear either in the parameter list or the
definition list. Similarly, each variable in the parameter list must appear in the
match expression (while this second requirement could be relaxed, it is useful
for catching mistakes). Consider the following example.

(define-rule bv-sign-extend-eliminate ((x ?BitVec) (n Int))
(def (s (bvsize x)))
(sign_extend n x) (concat (repeat n (extract (- s 1) (- s 1) x)) x))

In this rule, there are two parameters, x and n. The sort annotation ?BitVec
indicates that x is a bit-vector without specifying its bit-width. The latter is
stored in the local variable s using the bvsize operator. The rule says that a
(sign_extend n x) expression can be replaced by repeating n times the most
significant bit of x and then prepending this to x.

The define-cond-rule command is similar to define-rule except that it has
an additional expression, the condition, immediately after the parameter and
definition lists. This restricts the rule’s applicability to cases where the condition
can be proven equivalent to true under the matching substitution. In the example
below, the condition (> n 1) can be verified by evaluation since in SMT-LIB,
the first argument of repeat must be a numeral.

(define-cond-rule bv-repeat-eliminate-1 ((x ?BitVec) (n Int))
(> n 1) (repeat n x) (concat x (repeat (- n 1) x)))

Note that the rule does not apply to terms like (repeat 1 t) or (repeat 0 t).

H. Lachnitt et al.318



Fixed-point Rules The define-rule* command defines rules that should be
applied repeatedly, to completion. This is useful, for instance, in writing rules
that iterate over the arguments of n-ary operators. Its basic form, with a body
containing just a match and target expression, defines a rule that, whenever is
applied, must be applied again on the resulting term until it no longer applies.

The user can optionally supply a context to control the iteration. This is
a third expression that must contain an underscore. The semantics is that the
match expression rewrites to the context expression, with the underscore re-
placed by the target expression. Then the rule is applied again to the target
expression only. In the example below, the :list modifier is used to represent
an arbitrary number of arguments, including zero, of the same type.

(define-rule* bv-neg-add ((x ?BitVec) (y ?BitVec) (zs ?BitVec :list))
(bvneg (bvadd x y zs)) (bvneg (bvadd y zs)) (bvadd (bvneg x) _))

This rule rewrites a term (bvneg (bvadd s t · · ·)) to the term (bvadd (bvneg s)
r) where r is the result of recursively applying the rule to (bvneg (bvadd t · · ·)).

Changes to Rare Here, we briefly mention the changes to Rare with respect
to [28]. First, we have support for a richer class of approximate sorts, including
approximate bit-vector and array sorts. Also, we replaced the let construct by
the new def construct. The definition list is more powerful as it applies to the
entire rest of the body (whereas let was local to a single expression).

Additionally, to aid with bit-vector rewrite rules, we added several operators:
bvsize, which returns the width of an expression of sort ?BitVec; bv, which
takes a integer n and natural w, and returns a bit-vector of width w and value
n mod 2w; int.log2 which returns the integer (base 2) logarithm of an integer,
and int.islog2, which returns true iff its integer argument is a power of 2.

We also removed the :const modifier, which was used previously to indicate
that a particular expression had to be a constant value. We found that this
adds complexity and is usually unnecessary. For rules that actually manipulate
specific constant values, we can specify those values explicitly, e.g., by using the
bv operator above.

4 IsaRare: from Rare Rewrites to Isabelle Lemmas

In this section, we introduce IsaRare, a plugin for Isabelle that automatically
translates a Rare rule into an Isabelle lemma stating the correctness of the
rule. Being able to generate such lemmas automatically is highly desirable, as
Rare rules may be added and/or changed frequently for a given solver, or differ
significantly between solvers, and manually translating Rare rules into lemmas
is time-consuming and error-prone. IsaRare can also suggest a proof sketch
which is sometimes sufficient to prove the lemma. If this automatic proof fails,
the user must provide the proof or determine that the lemma does not hold. In
the latter case, Isabelle’s counterexample-finder Nitpick [10] can be helpful.
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(define-cond-rule str-len-replace-inv ((t String) (s String) (r String))
(= (str.len s) (str.len r))
(str.len (str.replace t s r)) (str.len t))

lemma s t r _len_replace_ inv :
f ixes t : : s t r ing and s : : s t r ing and r : : s t r ing
shows " smtlib_ s t r _len s = smtlib_ s t r _len r −→
smtlib_ s t r _len ( smtlib_ s t r _replace t s r ) = smtlib_ s t r _len t "

Fig. 2: Rare rule and corresponding lemma.

Figure 2 shows an example of a Rare rule (which simplifies the length of
the result of a string replacement) and the Isabelle lemma generated from it by
IsaRare. Roughly speaking, a rule with parameters x1, . . . , xm, definition list
((y1 d1) · · · (yn dn)), condition c, match expression s, and target expression t
is converted by IsaRare into a lemma of the form ∀x1, . . . , xm. (c ⇒ s = t)σ
where σ is the substitution {y1 %→ d1, . . . , yn %→ dn}. Type inference in Isabelle
is used to suitably instantiate the ? wildcards in any approximate sorts in the
rules.

Next we discuss the main challenges we encountered while implementing the
translation from Rare to Isabelle.

4.1 Adding New Theories

Since IsaRare uses Isabelle’s SMT-LIB parser, it was necessary to extend it
to handle SMT theories not previously supported and, in case there was no
corresponding Isabelle theory, to define new types, definitions and theorems cor-
responding to the SMT-LIB theory. For sets and arrays, Isabelle already provides
the required data structures (Set . set and Map.map respectively) and definitions
(e.g., union, and store). Translation from the SMT operators and types is thus
straightforward, requiring only simple extensions to the parser.

The SMT-LIB parser also had to be extended for the operators and sorts
of the SMT-LIB theory of strings. String terms are represented with Isabelle’s
HOL. s t r ing , and regular expressions are represented as sets of strings. We de-
veloped a new theory with auxiliary definitions and theorems meant to facilitate
the proving of lemmas generated by IsaRare. Since strings are defined as lists
of characters, we were able to reuse many list operators for our definitions. For
example, string concatenation is defined as concatenation of lists.

As mentioned, bit-vectors are encoded in Isabelle using the word type, which
represents integers modulo 2n, where n is a type parameter (see Subsection 4.3).
Isabelle has support for reasoning about this type, but we still had to provide a
number of extensions. For example, to translate bit-vector rewrite rules, we had
to extend Isabelle’s SMT-LIB parser significantly. We added support for all of
the standard SMT-LIB operators, as well as some additional operators that cvc5
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(define-rule bv-extract-extract
((x ?BitVec) (i Int) (j Int) (k Int) (l Int)))
(extract l k (extract j i x)))
(extract (+ i l) (+ i k) x))

(a) A Rare rule

t0 = (extract j i x) ∧
size t0 = j + 1 - i ∧
t1 = (extract l k t0) ∧
size t1 = l + 1 - k ∧
t2 = (extract ( i+l ) ( i+k) x) ∧
size t2 = ( i+l ) + 1 - ( i+k) ∧
j < size x ∧ 0 ≤ i ∧ i ≤ j ∧
l < size t0 ∧ 0 ≤ k ∧ k ≤ l ∧
( i+l ) < size x ∧ 0 ≤ ( i+k) ∧
( i+k) ≤ ( i+l )

(b) Additional Assumptions

Fig. 3: Implicit Assumption Generation

supports, such as bvuaddo (which checks for overflow from unsigned addition). It
was also necessary to add several new definitions and basic theorems to Isabelle,
for example for reasoning about the extract operator.

4.2 Mismatch between Isabelle and SMT-LIB operators

An important challenge for the translation concerns the mismatch between
SMT-LIB operators and Isabelle functions. One of the main difficulties concerns
implicit assumptions. As an example, consider the bit-vector extract operator.
The term (extract i j t) denotes the sub-vector of bit-vector t from index i
through index j, where i is the more significant index. SMT-LIB specifies that
the second index j must be at most i, and both indices must be in the range
[0, n), where n is the bit-width of t — making the result a bit-vector of width
i+1− j. These assumptions are necessary to correctly capture the semantics of
SMT-LIB’s extract since the extract operator in Isabelle is more permissive.

There are several ways to address this issue. First, we could make the implicit
assumptions explicit in the Rare rules. However, this would be tedious and
error-prone and would greatly clutter the Rare rules. It is also superfluous to
always manually add them since the constraints are inherent in the SMT-LIB
semantics. A second option is to write custom definitions for SMT-LIB operators
in Isabelle that exactly match the SMT-LIB semantics (i.e., are undefined if the
implicit assumptions do not hold). The main disadvantage of this approach is
that it complicates proving the translated Rare rules, as those proofs cannot
directly use any existing Isabelle lemmas that use the standard definitions. It
also works against one of our long-term goals, which is to be able to use proof
reconstruction to provide proofs for Isabelle conjectures, conjectures which will
naturally use the existing Isabelle operators.

The last option, which we adopted, is to automatically add the implicit as-
sumptions during the translation of Rare rules to Isabelle lemmas. This does
make the lemmas a bit more complicated, but it is the minimal complexity
needed to bridge the semantic gap between the two extract operators. And, we
can be confident that these implicit assumptions will easily be discharged when
using the lemmas for proof reconstruction, since SMT proofs only use operators
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in ways that are consistent with SMT-LIB semantics (unless there is a bug, in
which case proof reconstruction should fail). Figure 3 shows an example of a
Rare rule with three applications of the extract operator, together with the
assumptions added by IsaRare.

In a few cases, we had to fall back on the custom definition approach. For
example, we had to do this for the bit-vector concat operator for bit-vector
concatenation. To see why, note that the SMT-LIB operator can take two or
more arguments (abbreviating nested binary applications), each with arbitrary
bit-width. Recall that the :list annotation in Rare can be used to specify
a variable number of arguments. There is no way to even state lemmas cor-
responding to rewrite rules involving concatenations of a variable number of
arguments in Isabelle using its built-in binary concatenation operator. For this
case, we thus define a custom concatenation operator that matches the SMT-
LIB semantics. The implicit assumption that the bit-width of the result is the
sum of the bit-widths of the arguments is embedded in the custom definition.
Using the new definition, we can translate the problematic rules into Isabelle
lemmas. As expected, proving these lemmas requires extra work. Specifically, it
requires formulating and proving bridging theorems between Isabelle’s built-in
concatenation operator and the new one we defined.

4.3 Supporting Approximate Sorts

With the addition of approximate sorts to Rare, we had to extend Isabelle’s
SMT-LIB translator to support them. We observe that Isabelle/HOL is not
based on a dependently-typed logic. However, it supports an encoding of sorts
depending on integer values into polymorphic types with parameters that range
over types expressing ordinals. In particular, bit-vectors of width w are repre-
sented by the type (n word) of integers modulo 2w; for instance, 3 : : (8 word)
represents an integer with value 3 modulo 28. In fact, thanks to polymorphism,
it is possible for the bit-width to be a type variable (e.g., 3 : : ( ' a : : len word)).
Note that this is more precise than allowing the bit-width in the type to be com-
pletely unknown, as in approximate sorts: with type parameters one can state,
for instance, that two terms of unknown bit-width have the same width, whereas
two terms both of sort ?BitVec may have different bit-widths.

Conveniently then, all the approximate sorts in Rare correspond to poly-
morphic types in Isabelle. For instance, ?BitVec corresponds to 'a word and
?Array corresponds to ( ' a , 'b) map where 'a and 'b are type variables. During
parsing, each occurrence of a approximate sort is converted into an instance of
the corresponding polymorphic type obtained by instantiating each sort vari-
able with a fresh dummy type. For some bit-vector operators, the output sort
is dependent on the input sorts (e.g., extract and concat as mentioned above).
For applications of such operators, we also use a dummy type for the bit-width
of each argument for which the width is not known. Once translation is done,
we use Isabelle’s type inference algorithm to concretize each dummy type to a
monomorphic one. For example, during translation of the rule bv-ugt-eliminate
below, the variables x and y would both be assigned dummy types.
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(define-rule bv-ugt-eliminate ((x ?BitVec) (y ?BitVec))
(bvugt x y) (bvult y x)

)

However, bvugt requires that both of its arguments be bit-vectors of the same
width in SMT-LIB. This restriction is either already present in the definition
in Isabelle that we map an operator to, or added during parsing as an implicit
assumption, as we describe in Section 4.2. The type inference algorithm then
computes the most general type for x and y that satisfies all assumptions. In this
case, it correctly infers that they are bit-vectors of arbitrary but equal bit-width.

4.4 List Parameters

As mentioned earlier, SMT-LIB supports multi-arity syntax for certain binary
operators, and Rare supports a variable number of arguments via the :list
annotation. In contrast, in Isabelle all operators are fixed-arity. To facilitate the
translation in these cases we added a new datasort, 'a rare_ListVar , with a
single constructor L is tVar : : ' a l i s t → 'a rare_L is tVar to encapsulate multi-
ple arguments in a list. We also introduced two second-order operators, called
rare_ l i s t _ l e f t and rare_ l i s t _ r ight , to encodeRare left-associative and right-
associative operators, respectively. As an example, a Boolean term of the form
(and x1 · · · xn y z) is translated to the Isabelle term ( rare_ l i s t _ r ight (∧ )
( L is tVar [x1, . . . , xn ] ) (y ∧ z ) ) . The rare_ l i s t _ l e f t and rare_ l i s t _ r ight
functionals fold the operator passed as first argument over the list stored in their
second argument to obtain properly nested binary applications. For example, if
n = 2, the Isabelle term above is translated to (x1 ∧ (x2 ∧ (y ∧ z ) ) ) .

For every multi-arity SMT-LIB operator, we prove that it can be built up
from Isabelle’s built-in binary version using fold ( r ) functions. For Rare rules
with list parameters, these transfer lemmas become part of the correctness proof
automatically generated by IsaRare. When proving the corresponding lemma,
we can take advantage of the many lemmas in Isabelle’s libraries about fold
functions without having to know the internals of the translation process.

If we have a Rare rule in which all arguments to an operator are lists, we
must handle the special case when the lists are all empty. When the operator
has an identity element, we return that. For example, applications of and to just
empty lists are translated as standing for true. So far, we have only encoun-
tered one operator without an identity: bit-vector concatenation. Since neither
SMT-LIB nor Isabelle support bit-vectors of bit-width 0, for that operator, we
explicitly add an assumption ruling out the case where all lists are empty.

4.5 Writing Lemmas and their Proofs

To generate a lemma from a Rare rewrite rule, IsaRare first introduces the pa-
rameters with their types using Isabelle’s f ixes construct. Next, it generates the
statement of the lemma, the goal, which states that the implicit assumptions and
conditions imply the equality of the match and target terms. The types of any
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bit-vector constants are fully specified (via type ascription), because otherwise
the lemma may be too general and not hold.

Lastly, IsaRare adds an Isabelle proof of the lemma. For lemmas that do not
contain lists, this is simply a call to the main automatic tactic auto. Otherwise,
the list constructs are eliminated as explained above, and any transfer lemmas
are applied to the resulting terms. This ensures that goals will not contain any
IsaRare list definitions. We then invoke induction for every list and use the
simp_ a l l tactic to attempt to solve and simplify the goals.

The proof is printed in apply style so that it can be easily modified and com-
pleted manually if Isabelle is unable to discharge all its sub-goals automatically.

4.6 Availability

IsaRare currently supports the theories of uninterpreted functions, linear arith-
metic, bit-vectors, arrays, strings, and sets. It is publicly available7 under the
BSD 3-Clause license. We plan to submit IsaRare to the Archive of Formal
Proofs [20]. We have also been working with the Isabelle maintainers to have
our extensions to Isabelle itself (e.g., to the SMT-LIB parser) included in the
official Isabelle distribution. Many features were already included in the lat-
est release. IsaRare requires the Word_Lib library (which is also included in
the Archive of Formal Proofs) if it is used on Rare rules containing bit-vector
operators not present in Isabelle itself.

5 Evaluation and Experience

We used IsaRare to help develop, translate, and verify new Rare rewrite rules.
These rules were designed to address coarse-grained rewrite steps appearing
in cvc5 proofs, i.e., steps that could not be elaborated into fine-grained steps
using the existing Rare rules and the approach mentioned in Section 2.2. In
this section, we report on this experience and also discuss challenges arising
from particular rewrites and theories.

5.1 Impact of New Rewrites on cvc5 Proof Holes

Previous work developed 85 Rare rules for cvc5 [28]. For our evaluation, we
ran cvc5 with these plus our 163 new rules, bringing the total number of Rare
rules in the cvc5 database to 248. We evaluated the impact of the new rules on
cvc5’s ability to produce fine-grained proof steps by comparing the success rate
of the elaboration (i.e., percentage of rewriting proof steps that are successfully
elaborated into fine-grained steps) before and after the addition of the new rules.
We ran cvc5 on 70,709 unsatisfiable benchmarks, as determined by cvc5 [2,
Sec. 4], in the SMT-LIB logics containing quantifier-free problems with equality
and uninterpreted functions, arrays, linear arithmetic, strings, and bit-vectors.
7 https://github.com/cvc5/IsaRARE
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rewrites

theory old new proven autoproven

EUF 22 43 43 37
Arithmetic 23 22 22 14
Sets 0 7 7 7
Arrays 0 4 4 4
Strings 40 57 57 37
Bit-vectors 0 115 84 62

Table 1: Rule and rule verification counts per theory

The results were generated with a cluster equipped with 16 x Intel(R) Xeon(R)
CPU E5-2637 v4 @ 3.50GHz, 62.79 GiB RAM machines, with one core per
solver/benchmark pair, 1200s time limit, and 8gb memory limit.

For string benchmarks (the only set evaluated in [28]), the success rate went
from 92% to 98%. Results on the logics with equality and uninterpreted func-
tions, arrays, and linear arithmetic were similar. By far the most challenging
theory, in terms of rewrite rules, is the bit-vector theory. Prior to our work,
there were no Rare rules for this theory, so no bit-vector rewrite steps could
be turned into fine-grained steps. With our 115 new Rare rules for bit-vectors,
92% of coarse-grained bit-vector rewrite steps are successfully elaborated into
fine-grained steps. We see this as tremendous progress towards full fine-grained
proofs for bit-vector problems.

5.2 Translating and Verifying Rewrites

In Table 1, we list the number of new rules in each theory, distinguishing between
how many were there before (old) and the total including both the old rules and
our new rules (new).8 We also show how many of the lemmas we have successfully
proven and how many of these were done automatically, i.e., either by the proof
suggested by IsaRare or by a single call to Sledgehammer. The proven column
shows that all non-bit-vector rules as well as most of the bit-vector rules have
now been proven. The numbers in the last column show that most of the proofs
were provided automatically by IsaRare.

For the theory of strings, the number of lemmas automatically proven is not
clear-cut. For other theories, libraries with useful background lemmas already
existed, but for strings we had to add many new general-purpose lemmas our-
selves and then decide whether these should count as background lemmas or as
part of the proof effort for a rewrite rule. We were rather conservative in that
decision, i.e., we did not count a lemma as automatically proved if it used a
lemma whose classification as a background lemma was in doubt. Many of the
8 Consolidation in the set of arithmetic rules actually resulted in one fewer rule than
existed previously.
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translated string rewrites had to be proved manually because they required in-
duction on string length, especially since many operators are defined inductively.
However, we found that most of these manual proofs were fairly easy once an
appropriate induction variable was selected.

There are no performance issues—IsaRARE translates most files in millisec-
onds. Even for our biggest RARE database, the one containing bit-vector rules,
IsaRARE took only around 1-2 seconds on our machine.

5.3 Bugs Found in String Rules

We found several bugs in the existing Rare rules for strings by using Isabelle’s
counterexample finder Nitpick [10] on the translated Isabelle lemmas. We diag-
nosed and fixed each of them, so that now they can all be verified.9 The bugs
fall into three main categories.
Misinterpreted Semantics: The str.substr operator takes three arguments and
returns the substring of the first argument, starting at the position given by the
second argument, and continuing for the number of characters specified by the
third argument. The following (corrected) rule simplifies a substring expression
to the empty string whenever the third argument is 0 or negative.

(define-cond-rule str-substr-empty-range ((x String) (n Int) (m Int))
(>= 0 m) (str.substr x n m) "")

However, the first version of the rule had the wrong condition: (>= n m) rather
than (>= 0 m). This is likely due to the rule’s author mistaking the third argu-
ment of str.substr for an absolute index instead of a relative offset.
Forgotten Condition: The corrected rule below says that, under some assump-
tions, the length of a substring term is equal to the offset (third) argument.

(define-cond-rule str-len-substr-in-range ((s String) (n Int) (m Int))
(and (>= n 0) (>= m 0) (>= (str.len s) (+ n m)))
(str.len (str.substr s n m)) m)

The earlier version of the rule did not include the condition (>= m 0). This how-
ever, makes it unsound, because according to the semantics of str.substr, if the
offset is negative, the result is just the empty string. This led to a counterex-
ample with a negative value for m. Note that this condition is not automatically
added by IsaRare since str.substr is defined for negative offsets.

Misunderstanding the Rewrite: One rule was designed to closely mirror a
piece of cvc5 code implementing a rewrite, but it failed to properly capture all
cases. The code involved included several conditionals resulting in two different
ways a term could be rewritten. The original rule only captured one of the two
cases and even missed one of the conditions for the case it included. Since this
rule was quite complex and was only incorrect for some corner cases, it would
have been challenging to find this bug without our verification effort.
9 Fortunately, none of the bugs in rules corresponded to buggy code in cvc5 itself.
However, cvc5 could have used those rules to construct incorrect proofs.
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5.4 Bit-vector Rewrite Rules

Bit-vector theory solvers make extensive use of rewriting, employing large num-
bers of rewrite rules. In order to define Rare rules for cvc5’s bit-vector theory,
we began by analyzing the cvc5 rewriting code, which implements a total of
99 rewrite methods. We then wrote Rare rules to try to capture the behavior
of these methods. There are 5 methods that are too complex to be captured by
Rare (or by any straightforward extension of it). For each of these, we instead
added new hard-coded proof rules to the cvc5 proof rule database.10 These
hard-coded proof rules are not included in Table 1, but they are used to help
demonstrate the overall progress on SMT-LIB proofs (Section 5.1). The long-
term plan for reconstruction of proofs using these rules is to write custom Isabelle
tactics for reconstructing those proof steps.

Unlike with the string rules, where we applied IsaRare to already-written
rules, we used IsaRare extensively to help debug the bit-vector rules as they
were being written. We were able to quickly and easily find many kinds of mis-
takes this way. For example, rule authors mixed up bvneg (unary 2’s complement
negation) and bvnot (bit-wise Boolean negation). In other cases, rules used in-
consistent bit-widths. The type inference that IsaRare performs is particularly
helpful in such cases, as it is stricter than the cvc5 Rare parser.

Many of the bit-vector rules can be proved automatically, but others must
be proved manually and are quite challenging, especially those involving signed
arithmetic or division. Despite this, as shown in Table 1, the process of manually
proving the full set of bit-vector lemmas is largely complete. This is important
for our long-term goal of reconstructing SMT proofs in Isabelle.

6 Conclusion

We presented IsaRare, a tool providing an automatic pipeline for verifying
rewrite rules. We showed the effectiveness of our approach by proving the cor-
rectness of a large number of rewrite rules used in cvc5 proofs. Our experiments
show that many lemmas can be proved with minimal user interaction.

This work is also part of a long-term project that aims to further automate
proof search in Isabelle. The goal is to be able to reconstruct any cvc5 proof in
Isabelle’s internal inference engine. This, of course, also includes reconstructing
rewrite steps. The lemmas IsaRare generates are directly applicable to this
effort. We plan to provide a detailed description and evaluation of this larger
effort in future work.

Data Availability Statement The datasets generated and analyzed during the
current study are available in the Zenodo repository: https://zenodo.org/
records/10048664 [24].

10 This is analogous to the handling of polynomial normalization in [28].
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